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SUMMARY

Model-based clustering is a popular tool for summarizing high-dimensional data. With the number of
high-throughput large-scale gene expression studies still on the rise, the need for effective data-
summarizing tools has never been greater. By grouping genes according to a common experimental ex-
pression profile, we may gain new insight into the biological pathways that steer biological processes of
interest. Clustering of gene profiles can also assist in assigning functions to genes that have not yet been
functionally annotated. In this paper, we propose 2 model selection procedures for model-based clustering.
Model selection in model-based clustering has to date focused on the identification of data dimensions that
are relevant for clustering. However, in more complex data structures, with multiple experimental factors,
such an approach does not provide easily interpreted clustering outcomes. We propose a mixture model
with multiple levels, MIXL, that provides sparse representations both “within” and “between” cluster
profiles. We explore various flexible “within-cluster” parameterizations and discuss how efficient parame-
terizations can greatly enhance the objective interpretability of the generated clusters. Moreover, we allow
for a sparse “between-cluster” representation with a different number of clusters at different levels of an
experimental factor of interest. This enhances interpretability of clusters generated in multiple-factor con-
texts. Interpretable cluster profiles can assist in detecting biologically relevant groups of genes that may
be missed with less efficient parameterizations. We use our multilevel mixture model to mine a prolifer-
ating cell line expression data set for annotational context and regulatory motifs. We also investigate the
performance of the multilevel clustering approach on several simulated data sets.
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1. INTRODUCTION

Model-based clustering is frequently used to summarize complex high-dimensional gene expression data.
The base model is usually Gaussian, though some robust alternatives have recently been proposed
(Banfield and Raftery, 1993). The multivariate Gaussian mixture allows for clusters of varying shape
and volume (Fraley and Raftery, 2002, 2004; Raftery and Dean, 2006). Many nonparametric clustering
algorithms have also been proposed for the analyses of genomic data. Nonparametric approaches may
seem more flexible than parametric mixture modeling. However, many of the most commonly used non-
parametric schemes are in fact very restrictive, in that cluster shapes are implicitly defined by the cost
function of the clustering algorithm (Jornsten, 2004). We consider k-means as an example (or any center-
based clustering like partition around medoids or the k-median [Kaufman and Rousseeuw, 1990; Jornsten
and others, 2002]). By making cluster assignment solely dependent on the cluster center, cluster shape
is ignored. Thus, k-means tends to produce spherical and equal-size clusters and is thus more restrictive
than a model-based clustering approach where the cluster covariances are parameterized.

In this paper, we discuss how to generate interpretable and efficient data representations using mul-
tivariate Gaussian mixture models. We address the following limitations of model-based clustering: (1)
Model-based clustering usually treats all experimental conditions interchangeably, even in the case of
multifactor experiments, and (2) subset model selection for model-based clustering has mainly focused
on identifying the “dimensions” that are informative with respect to cluster separation (Law and others,
2004; Raftery and Dean, 2006; Tadesse and others, 2005; Hoff, 2006), as opposed to the sparsest rep-
resentation of each cluster mean. The limitations listed in items (1) and (2) above can result in both an
overfit and an underfit of the data. Overfitting might be caused by assigning an unnecessary degree of
complexity to some clusters, whereas underfitting concerns the number of clusters.

We propose a multilevel mixture modeling approach that generates interpretable clusters in multiple-
factor experiments. Throughout the paper, we will focus on an example data set involving proliferating
stem cell lines. Our task is to identify sets of genes that are differentially regulated during neurogenesis
and gliogenesis, as indicated by different expression levels in 2 divergent neural stem cell clones. Upon
the withdrawal of a growth factor (FGF) from the medium, one clone (L2.3) becomes predominately glial
like (expressing glial markers GFAP, GalC). The other (L2.2) differentiates primarily into cells expressing
neuronal markers (TuJ1) (Goff and others, 2007). Initially, the cell lines are virtually indistinguishable and
are believed to exist in a state of “preconditioning” or “preprogramming”. Thus, sets of neuron-specific
and glia-specific genes are active and will determine the cell fate of the clones. The 2 stem cell lines are
observed over the course of 3 days. Among the scientific questions of interest raised by the biologists
(Goff and others, 2007) are: (a) How do the time-course profiles of the glial-like (L2.3) and neuron-like
(L2.2) cell lines differ?, (b) Are there sets of genes for which the expression converges (diverges) between
the glial-like and neuron-like cell populations?, and (c) How dominant is the “preprogramming” effect?

For this 2-factor experiment (cell line and time), a 2-level mixture model is appropriate. (We will
focus on the 2-level model in detail in the paper and briefly discuss the generalization to multiple levels
in the conclusion.) We introduce the model notation in the context of the above experiment. We denote
expression of gene g in the glial-like population (L2.3) by xg and in the neuron-like (L2.2) population by
yg . The feature vectors, xg and yg , represent the time-course expression profiles of gene g in the glia and
neuron cell lines, respectively. Preliminary analysis indicates that groups of genes exhibit a similar time-
course expression profile in the glia cell line but differ in the neuron cell line. Furthermore, the glia cell
line is also associated with larger differential expression over time. Thus, if the feature vectors (xg, yg)
are clustered together, as a single 2 × T -dimensional feature, the large expression changes in the glia cell
line may dominate the clustering and we might miss the more subtle expression patterns in the neuron
cell line. To resolve this issue, and help identify groups of genes whose activity is neuron specific, we
use a 2-level mixture model. Thus, we allow for a total of K clusters at the first level, representing the
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clustering of the glia cell line data. Within each of the k = 1, . . . , K clusters, we allow for Lk second-
level (sub)clusters, representing distinct expression profiles in the neuron cell line. Let Rg and Zg be 2
gene-specific indicators, denoting the cluster labels at the first and second levels. Our model assumes that

Pr(xg, yg | Rg = k, Zg = l) ∼ MV N (µµµkl,���kl),

where µµµkl = (µµµk,µµµl(k)) and ���kl represent the mean and variance–covariance matrix of the lth second-
level cluster within the kth first-level cluster. E(xg|Rg = k, Zg = l) = µµµk is the expression profile for the
glia cell line in cluster k, common to all subclusters l(k) = 1, . . . , Lk . E(yg|Rg = k, Zg = l) = µµµl(k) is
the expression profile for the neuron cell line in the lth second-level cluster, within the first-level cluster
k. To further enhance interpretability of the clusters, we parameterize the cluster means as µµµkl = Wβkl =
W(αk, γkl)

′, where αk denotes the first-level cluster–specific parameters and γkl denotes the second-level–
specific parameters. W is a design matrix for the multifactor experiment and reflects a scientific question
of interest. We perform subset selection on the “parameters”, not the dimensions, and thus obtain cluster
means that are directly interpretable in terms of the between-experimental factors and within-experimental
factor expression. We discuss specific choices of parameterizations in Section 2.

While we focus on a 2-factor experiment in this paper, the multilevel cluster model is generally appli-
cable to, for example, experiments involving multiple species or varying treatment dosages and regimens.
In this example, as in our study, it is of interest to focus particularly on differential effects across levels of
an experimental factor of interest (e.g. species, dose).

A few other schemes with a multilevel flavor have been proposed. Li (2005) introduced a layered mix-
ture model to allow for flexible within-cluster structures. Akin to mixture discriminant analysis (Hastie and
Tibshirani, 1996) for classification, each cluster (class) is assumed to come from a mixture of normals and
can thus incorporate more complex cluster (class) shapes. The number of clusters is assumed known, and
clusters do not share any mixture components with other clusters. Our multilevel mixture model differs
from Li’s approach in that an unknown number of clusters may share components and model parameters
and that the levels of the mixture relate to the experimental factors. Yuan and Kendziorski (2006) recently
proposed a multilevel approach to gene clustering. Each cluster is assumed to be generated from a mix-
ture of differential expression patterns (overexpressed, underexpressed, and no differential expression).
An empirical Bayes strategy is adopted to fit the model. The motivation is that the clustering induces a
regularization of the gene effect estimates, and thus power of detection of differential expression is in-
creased. Our multilevel approach allows for a more flexible parameterization of the cluster means across
multiple experimental conditions. We identify differential expression patterns both within and between
the experimental factors through subset model selection.

The paper is structured as follows. In Section 2, we introduce the multilevel mixture model,MIXL,
and propose a method for subset selection and validation of the number of clusters. In Section 3, we apply
MIXL to a multifactor gene expression data set. In Section 4, we illustrate the strengths of our approach
on several simulated data sets. We conclude this paper with a discussion.

2. THEMIXL MODEL

2.1 A multilevel parameterization for model-based clustering

We present theMIXL model in the case of 2 populations (e.g. cell lines) of interest, and samples from
both these populations are collected across T time points as in the experiment described in Section 1. (We
briefly discuss generalizations in Section 5.) Let xg denote the observations across T = 3 time points for
gene g (g ∈ {1, . . . , G}) in cell line 1 (glia like), and similarly yg in cell line 2 (neuron like). We denote
the total number of clusters at the first level (glia) by K and the number of second-level clusters (neuron)
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Fig. 1. (a) An illustration of a mixture model with 2 levels; 2 first-level clusters for cell line 1 (solid lines). The 2
sets of dashed lines represent the corresponding subclusters (level 2) for cell line 2. Thus, here K = 2, and L1 = 2,
L2 = 2. (b) The “dynamic differential expression (DE) parameterization”. The α parameters model the time-course
expression profile for cell line 1, whereas the γ parameters model the time course of “cell line differential” expression.

within each first-level cluster k by Lk . Let Rg and Zg be 2 gene-specific cluster indicators denoting the
cluster labels at the first and second level. Our model assumes that

Pr(xg, yg | Rg = k, Zg = l) ∼ MV N (µµµkl,���kl), (2.1)

where µµµkl = (µµµk,µµµl(k)) and ���kl represent the mean and variance–covariance matrix of the lth second-
level cluster within the kth first-level cluster. The first T components of the µµµkl vector, µµµk, correspond to
the mean levels of xg . The last T components, µµµl(k), correspond to the mean levels of yg (Figure 1(a)).
Note, if we let Lk = 1 for all k, the model formulation in (1) coincides with a standard mixture model.

The multilevel framework allows for various interpretable parameterizations at each level. We pa-
rameterize the cluster mean as µµµkl = Wβkl = W(αk, γkl)

′. The α-parameter vector represents first-level–
specific parameters, and the γ vector represents the second-level model parameters. Next, we will consider
the following 3 parameterizations in detail:

PARAMETERIZATION I. Mean differential expression

µµµk = (αk1, αk2, αk3)
′,

µµµkl = (αk1, αk2, αk3, [αk1 + γkl1], [αk2 + γkl2], [αk3 + γkl3])′.

The vector (αk1, αk2, αk3) represents cell line 1 expression at time points (t1, t2, t3) in cluster k. The vector
(γkl1, γkl2, γkl3) represents the cell line differences at each time point in subcluster l(k). Here, the main
scientific question addressed is thus the differential expression between the cell lines, at any given time
point.

PARAMETERIZATION II. Dynamical differential expression

µµµk = (αk1, [αk1 + αk2], [αk1 + αk2 + αk3])′,

µµµkl = (αk1, [αk1 + αk2], [αk1 + αk2 + αk3], [αk1 + γkl1], [αk1 + αk2 + γkl1 + γkl2],

[αk1 + αk2 + αk3 + γkl1 + γkl2 + γkl3])′.
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In the second parameterization (see Figure 1(b)), the time-course profile of the glial-like population is
modeled directly and, for example, flat time profiles are efficiently represented (αk2 = αk3 = 0). The
γ -vector represents the differential expression “time-course” of the 2 cell lines (e.g. parallel [γkl2 =
γkl3 = 0] or divergent [γkl1 = 0, γkl3 �= 0]).

PARAMETERIZATION III. Preprogramming differential expression

µµµk = (αk1, [αk1 + αk2], [αk1 + αk2 + αk3])′,
µµµkl = (αk1, [αk1 + αk2], [αk1 + αk2 + αk3], [αk1 + γkl1], [αk1 + γkl1 + γkl2],

[αk1 + γkl1 + γkl2 + γkl3])′.

The third parameterization efficiently models each time-course profile and a main differential cell line
effect for time point t1. Thus, flat glia time profiles are efficiently represented (αk2 = αk3 = 0), and
similarly flat time-course profiles for the neuron cell line are obtained if γkl2 = γkl3 = 0. The only direct
comparison between the cell lines is at time point t1.

Other data sets and experimental structures may require a different set of parameterizations. Ulti-
mately, the choice of parameterization should depend on the biological context and the scientific questions
of interest.

In all parameterizations, the variance–covariance matrix ���kl also includes parameters specific to the
levels of the model:

���kl =
[

���X
k ���XY

kl

���Y X
kl ���Y

kl

]
.

The variance–covariance structure allows for dependencies between gene expression measurements at all
time points and all levels. We further assume that, conditional on the multilevel cluster assignments, the
genes are independent of each other. Therefore, we have the following complete-data likelihood:

Pr(X, Y, R, Z | ���) =
G∏

g=1

Pr(xg, yg, Rg, Zg | ���)

=
G∏

g=1

K∏
k=1

L∏
l=1

[Pr(xg, yg | Rg = k, Zg = l)πkl ]
I (Rg=k,Zg=l),

where ��� = {µµµkl,���kl, k = 1, . . . , K , l(k) = 1, . . . , Lk} represents the overall parameter set of the model
and πkl are the mixing proportions. Due to the multilevel parameterization and the general variance–
covariance structure, the complete-data likelihood does not factorize into terms over which maximiza-
tion for each parameter can be carried out separately. Therefore, the standard maximization step for the
expectation–maximization (EM) algorithm of the mixture models does not lead to closed-form updates. To
resolve this issue, we derive a profile expectation–maximization (PEM) algorithm that relies on the factor-
ization of the likelihood into the likelihood of the first level of the hierarchy and the conditional likelihood
of the second level of the hierarchy given the first level. Additionally, each component of the factor-
ized likelihood is maximized by profiling of the corresponding expected complete-data log-likelihood.
Although purely motivated by the factorization of the expected full-data likelihood, the proposed PEM
algorithm can be classified as an expected conditional maximization algorithm proposed by Meng and
Rubin (1993).
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2.2 PEM algorithm for fitting the multilevel mixture model

We now describe the PEM algorithm for fixed K and Lk, ∀ k. Here, r refers to r th EM iteration, and we
suppress the dependence on r to ease the notation.

Initial values. The algorithm requires initial values of πkl , µµµkl, and ���kl. These are obtained via a
k-means clustering of the data with M = ∑∑∑

k Lk clusters. We then collapse a subset of the M clusters
for the first-level data (xg , glia cell line data) to form K first-level clusters. Within each first- and second-
level clusters, we estimate the parameters. Details of the initialization are discussed in the supplementary
materials, available at Biostatistics online.

E-step. This step is a regular E-step in fitting mixtures of multivariate normals. We have posterior class
probabilities given by

η̂
(r)
gkl = Pr(Rg = k, Zg = l | xg, yg,���

(r−1))
MV N (xg, yg | µµµ

(r−1)
kl ,���

(r−1)
kl )π

(r−1)
kl

Pr(xg, yg | ���(r−1))
.

M-step. In the M-step, we are dealing with the following maximization problem:

G∑
g=1

K∑
k=1

Lk∑
l=1

(
−1

2
η̂gkl(ug − Wβkl)

′���−1
kl (ug − Wβkl) − 1

2
η̂gkl log |���kl |

)
, (2.2)

where W is the design matrix, βkl = (αk, γkl), and ug = (xg, yg). (We provide explicit forms of
the design matrices of the 3 parameterizations in the supplementary materials, available at Biostatistics
online.) As discussed in Section 2.1, the main reason for a nonstandard mixture model M-step is due to the
cross talk between the 2 levels. The first part of the parameter vector βkl , denoted by αk , is the same for all
l, and similarly the left upper diagonal block ���X

k of ���kl. Hence, the corresponding estimates need to pool
information across all second-level clusters of the kth first-level cluster. We use a regularized profiling
method for maximizing the expected complete-data log-likelihood given in (2.2). Our general iterative

PEM algorithm

1. E-step. Compute η̂gkl , g = 1, . . . , G, k = 1, . . . , K and l = 1, . . . , Lk .
2. M-step.

(a) Update π̂kl , k = 1, . . . , K and l = 1, . . . , Lk .

(b) M-step-Profile-1. (marginal xg)

i. Update ���X
k .

ii. Update µµµk by reestimating α̂k via weighted generalized least squares.

iii. Iterate (i) and (ii) till convergence.

(c) M-step-Profile-2. (conditional yg|xg)

i. Update conditional covariances and the mean ���Y X
kl , ���Y |X

kl , ���Y
kl and µ

Y |X
kl .

ii. Update µµµkl by reestimating γkl via weighted generalized least squares and set β̂kl =
(α̂k, γ̂kl)

′.
iii. Iterate (i) and (ii) till convergence.
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scheme is to factorize the joint likelihood of xg and yg as the product of marginal likelihood of xg and
the conditional likelihood of yg given xg . We first maximize the marginal likelihood of xg by profiling to
obtain estimates of αk and ���X

k . Given these estimates, we maximize the conditional likelihood of yg given
xg , again by profiling over the mean and the variance–covariance matrix. We thus obtain estimates γkl and
the second-level components of ���kl. The estimates of αk and γkl are obtained via 2 weighted generalized
least squares procedures. We provide details of these derivations, as well as computational considerations,
in Section 2 of the supplementary materials, available at Biostatistics online.

All the update states in the PEM algorithm are in closed form, which makes the implementation of the
multilevel mixture free of black-box optimization. Although, the profiling steps could in principle benefit
from internal iterations (iii above), it is in general more advantageous to spend the computing time on the
outer EM iterations (1 and 2).

2.3 Model selection

Model selection in multilevel model-based clustering involves (1) selection of the appropriate parame-
terization for each cluster and (2) selection of the number of first-level clusters K and the number of
(sub)clusters {Lk, k = 1, . . . , K }, ∀ k.

Cluster parameterizations and subset selection. Let us first consider the case with fixed K and {Lk, k =
1, . . . , K }, ∀ k. We want to select a sparse representation for each cluster to enhance the objective in-
terpretability of the clustering outcome. For example, is a particular cluster model representing (i) a
static cell line difference or (ii) a dynamic one, and if so for which time points do the cell lines really
differ?

Recently, several papers have appeared on the topic of variable selection for model-based clustering.
These papers focus on the selection of a subset of variables or dimensions of the feature vector that can
discriminate between cluster components (e.g. Friedman and Meulman, 2002; Law and others, 2004;
Raftery and Dean, 2006; Hoff, 2006; Tadesse and others, 2005).

In our parameterization of the cluster means, we allow for cluster-specific descriptions of contrasts
between variables “within” a cluster, as well as “between” clusters. For each cluster, we allow for a subset
of “parameters” to be nonzero. The subset of coefficients that are set to 0 does not necessarily correspond
to dimensions that are irrelevant for clustering. Take as an example parameterization I; if for cluster k, a
subset of αk are set to 0, then these dimensions are unrelated to the clustering; if, however, parameters
γkl are set to 0, this implies that the cluster consists of a set of genes for which there is no cell line
effect.

To perform cluster subset selection, we threshold the posterior probabilities ηgkl to obtain cluster-
specific data sets of size nkl for each subcluster {k, l} (or nk for a first-level cluster k). For a first-
level cluster, k, xg = WK αk + ε, ε ∼ N (0,���X

K) for the nk genes g in the cluster. WK and ���X
K refer

to the first-level–specific partition of the design matrix and covariance matrix, respectively. After hard
thresholding of the posterior probabilities, model selection for each cluster has thus been reduced to a
model selection task in regression. We hold ���K fixed during the model selection. We select the sub-
set of nonzero αk parameters that minimize the BIC and thus obtain a cluster-specific model. Model
selection for a second-level cluster proceeds in a similar fashion. Given the first-level parameters αk

and the first-level data xg , we perform model selection in the regression setting for yg|xg . We identify
a subset of nonzero second-level parameters, γkl , that minimize the BIC. A detailed discussion of the
model selection can be found in Section 2.2.1 of the supplementary materials, available at Biostatistics
online.
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Selecting the number of clusters. The selection of the number of clusters is usually based on criteria such
as BIC, Cluster Information Criterion, or minimum description length (e.g. Fraley and Raftery, 2002;
Raftery and Dean, 2006). Here, we will use BIC. Let us consider a multilevel parameterization, where
the dimensionality of the data vectors at the first level is Dim(1) and at the second level is Dim(2). We
denote the model coefficients at the first level by αk, k = {1, . . . , K }, and the model coefficients at the
second level by γkl , l(k) = {1, . . . , Lk} for all k = {1, . . . , K }. The subcluster structure of the model is
summarized by the vector LK = {Lk, k = 1, . . . , K }.

In Section 2.3.1, we considered subset model selection for each cluster {k, l}. Thus, the number of
nonzero coefficients αk �= 0 may be less than Dim(1), and similarly for γkl . We denote the number of
nonzero coefficients at each cluster {k, l} by (dim(αk), dim(γkl)). We gather all parameters into a set
	(K , LK ) = {πkl , αk, γkl ,���kl, k = {1, . . . , K }, l(k) = {1, . . . , Lk}}. Then, the total model complexity
is given by

p(	(K , LK )) =
⎡
⎣ K∑

k=1

⎛
⎝dim(αk) +

Lk∑
l=1

dim(γkl)

⎞
⎠

⎤
⎦

(1)

+
[

K Dim(1)(Dim(1) − 1)

2

]
(2)

+
[(

K∑
k=1

Lk

)
− 1

]
(3)

×
[(

K∑
k=1

Lk

) (
Dim(1)Dim(2) + Dim(2)(Dim(2) − 1)

2

)]
(4)

,

where term (1) is the number of mean parameters estimated at the first and second levels, term (2) is the
first-level covariance estimates, term (4) is the second-level covariance estimates and cross-covariance
estimates between the first and second levels, and term (3) is the number of estimated cluster proportions.
For each given K and LK , we can compute the log-likelihood

l(	(K , LK )) =
G∑

g=1

log

⎛
⎝ K∑

k=1

Lk∑
l=1

πklφ((xg, yg); Wβkl ,���kl)

⎞
⎠ .

We then compute the BIC value as

BIC(K , LK ) = −2l(	(K , LK )) + p(	(K , LK )) log(G).

The model space {K , LK } is very large, and a complete search across all numbers of clusters and
subcluster constellations is prohibitively expensive. We explored several different search strategies for
identifying the optimal multilevel model. The best performance was obtained using a backward search. We
thus searched over a total number of clusters M = ∑∑∑

kLk , where for each M we considered a multilevel
model with K = M, . . . , 1 first-level clusters. We provide a complete outline of the model search in a
flowchart in Section 2.2.2 of the supplementary materials, available at Biostatistics online.

For both subset selection and the selection of the number of clusters, we adopt greedy searches. While
it is true that such schemes can converge to local optima, a fully exhaustive search is computationally
prohibitive. To remedy the problem, we run the full algorithm several times while initiating from different
starting values.
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3. APPLICATION TO DATA

3.1 The proliferating cell line data

We apply the MIXL model with subset selection to the data set of proliferating stem cell lines (Goff
and others, 2007) introduced in Section 1. mRNA was extracted for array analysis at t = 0, 1, and 3
days after the withdrawal of a growth factor from the medium (to speed up differentiation). The ABI
system rat-chips, with 28 000 probes, were used for the array experiments. Of these probes, we studied a
subset of 15 111 probes with complete annotation. We refer the reader to Section 3 of the supplementary
materials, available at Biostatistics online, for a description of the preprocessing of these data. Preliminary
significance analysis of the expression data identified 780 genes of the 15 111 as being differentially
expressed between the cell lines and/or time points at false discover rate 1% (using the Welch F-test and
the Benjamini–Hochberg p-value corrections). Similar results were obtained using the limma software of
Smyth (2004). For each of the 780 selected genes, we computed the mean gene profile across replicates
and standardized the mean profiles to have standard deviation 1, with a baseline of expression 0 for t = 0
in the glial-like population. The final data set to be analyzed is thus of dimension 780 by 5. We denote
gene expression in the glial-like population (L2.3) by x, where Dim(x) is 2 (for t = 1 and t = 3). We
denote the gene expression in the neuron-like population by y, where Dim(y) is 3 (t = 0, 1, and 3).

3.2 Subset selection of cluster model profiles

We first investigate the impact of subset selection on clustering by fitting single-level models with the
3 parameterizations, WI, WII, and WIII, described in Section 2.

Figure 2(c) depicts the BIC curves obtained for various numbers of clusters K in a single-level fit
(SF). The solid line is the BIC curve obtained without subset selection (i.e. a standard Gaussian mixture
model). The dashed and dotted lines are annotated with “1”, “2”, and “3”, referring to the 3 parameteriza-
tions WI, WII, and WIII, respectively. Across all numbers of clusters, the WIII (cell fate preprogramming)
parameterization provides the best fit, as indicated by the lower BIC values. The sparsity of each model
is summarized in Table 1. With an efficient parameterization, K = 8 and K = 9 are equally competitive.
The WIII parameterization identifies cluster profiles that are static between t = 0 and t = 1, indicating a
later developmental activity in one or both cell lines (e.g. clusters 1, 8) (see Figure 2(a)). We focus on the
most efficient parameterization (WIII) in Section 3.3.

3.3 Multilevel model-based clustering of the cell line study

In Figure 2(a), we depict the clustering outcome of an SF using parameterization WIII. As can be seen from
the figure, the glial-like population exhibits larger time differential effects than the neuron-like population.

Table 1. Number of coefficients set to 0 by subset selection for the SF with the 3 parameterizations

K WI:
∑∑∑

k1{βk = 0} WII:
∑∑∑

k1{βk = 0} WIII:
∑∑∑

k1{βk = 0}
5 2 5 7
6 6 4 7
7 4 4 7
8 2 5 5
9 3 6 6

10 5 7 9
11 5 7 7
12 6 8 10
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Fig. 2. (a) Cluster mean profiles of the best SF (K = 8). The glial-like population is depicted in the left panel, the
neuron-like in the right panel (parameterization WIII). (b) Cluster mean profiles of the best MF K = 7, M = 9, with 2
sets of subclusters (parameterization WIII). (c) The BIC curves obtained using the SF. Solid line: no subset selection.
Dashed and dotted curves annotated with the respective parameterization (WI, WII, WIII). The WIII–BIC curve is the
lowest, indicating that the WIII parameterization is the most efficient for this data set. (d) The BIC curves obtained
from the SF and MF, using the WIII parameterization. The MF always gives a lower BIC for the same total number
of clusters (M). The numbers in the figures (M, K ) refers to the total number of clusters and the number of first-level
clusters, respectively. The best BIC values are obtained with M = 9 clusters in total and K = 7 first-level clusters.

Furthermore, for some clusters (e.g. clusters 3 and 4 at the top of the left panel of the figure), the glial-like
cluster expression profiles almost coincide, whereas the neuron cluster profiles differ substantially. To
identify neuron-specific variations, we will thus treat the glial-like population data as the first level in the
MIXL model.

Figure 2(d) illustrates the additional efficiency of multilevel parameterizations. With the exception
of the case with 5 total clusters, the multi-level fit (MF) always produces a lower BIC value. We select
M = 9 clusters in total (cf. 8 clusters with the SF) and K = 7 first-level clusters. That is, we gain one
more cluster. One can view this as a reallocation of model complexity. In model selection, we aim to
balance the fit and model complexity (number of parameters). By setting some cluster parameters to 0
(within-cluster subset selection) and letting some clusters share parameters at the first level (between-
cluster parameter constraints), we save on complexity and can “afford” to form another cluster. In Table 2,
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Table 2. Number of coefficients set to 0 by subset selection for the SF and MF using parameterization WIII

Single level Multilevel

K
∑∑∑

k1{βk = 0} (M, K )
∑∑∑

kl1{βkl = 0} Multilevel constraints

5 7 (5, 4) 5 2
6 7 (6, 5) 11 2
7 7 (7, 6) 2 2
8 5 (8, 7) 4 2
9 6 (9, 7) 4 4

10 9 (10, 8) 4 4
11 7 (11, 8) 11 6
12 10 (12, 10) 6 4

we summarize the results listing for each cluster the number of parameters set to 0 via subset selection, as
well as the number of parameter constraints from the MF. For this data set, the larger gains are made when
the number of clusters increases. For example, 11 out of 49 parameters were set to 0 (or constrained) in
the (M = 11, K = 8) MF.

The cluster profile that is the most unique in the MF is cluster 9 (Figure 2(b) compared with (a)), which
as we shall see in Section 5 provides some interesting insight into neuron-specific activity. In addition, we
have identified 2 groups of gene clusters (3 and 4, 5 and 6) for which the glial-like population exhibits
identical expression patterns and a subdivision of genes exhibit radically different expression patterns in
neurons. Expression profiles of the 9 clusters generated by theMIXL fit are depicted in Supplementary
Figure 1, available at Biostatistics online. Clusters 1–6 have an almost complete correspondence between
the SF (Figure 2(a)) and the MF (Figure 2(b)). However, the multilevel model allows us to objectively state
that clusters 3 and 4, as well as 5 and 6, constitute clusters for which there is a neuron-specific difference
of expression only. Clusters 7–9 do not have clear counterparts among the single-level clusters.

3.4 Interpreting the clustering outcome

The MIXL model description allows for one extra cluster compared with the SF. In addition, MIXL
provides a sparse representation for each cluster. Clusters 3 and 4, as well as clusters 5 and 6, form sub-
clusters for which the expression pattern coincides in the glial-like population but differs in the neuron-like
population. We used GOstat (Beissbarth and Speed, 2004) to identify the significant gene ontology (GO)
categories for each of the 9 clusters. Tables 1–4 in the supplementary materials, available at Biostatistics
online, report top 10 significant GO categories for the 9 clusters. Among all clusters (780 genes), devel-
opmental terms and neurogenesis are overrepresented compared with all annotated probes (15 111) on the
array.

Cluster 9 was detected as a result of the efficientMIXL parameterization and contains genes that are
upregulated in neurons compared with glia at all times. Many of the top GO categories associated with
this cluster are linked to phosphorus binding. Phosphor is an activator of brain-derived neurotrophic factor
binding, a primary regulator of dendrite branching during neuron development.

Clusters 3 and 4 form one set of subclusters. The expression of the glia cell line is steadily increasing
for both clusters. In the neuron cell line, cluster 3 represents genes with a steady high level of expression,
whereas cluster 4 represents a profile of expression which increases over time. Genes in cluster 3 are
associated with neuron development and axon formation. Genes in cluster 4 are linked with dendrite for-
mation and growth. These subclusters thus appear to be related to different neuron-specific developmental
processes.
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Clusters 5 and 6 are another subcluster formation. The expression profile of the glia cell line is decreas-
ing in both clusters. Genes in cluster 6 are persistently underexpressed in the neuron cell line, whereas
genes in cluster 5 are overexpressed, compared with glia. Genes in cluster 6 (underexpressed in neurons)
are primarily associated with acid synthesis. Glial cells are believed to synthesize some acids that as-
sist in neuron development and migration. Cluster 5 (overexpressed in neurons) is associated with acid
metabolism, which is one process by which neurons generate neurotransmitters.

The annotations of the 9 clusters are summarized in the supplementary materials, available at Biostatis-
tics online. There, we also discuss several transcription factors detected by mining the genomic sequences
of genes in the neuron-specific subclusters for regulatory motifs.

4. SIMULATION STUDIES

We use the estimated best SF and MF (see Section 3) to generate mixtures of multivariate normal data from
realistic scenarios. We use the simulated data sets to validate (a) selection of the number of (sub)clusters
and (b) subset model selection for each cluster. The best single-level model is referred to as Mod(1) and
the best multilevel model as Mod(2).

Mod(1) is a single-level model with K = 8 clusters. The cluster means for this model are depicted in
Figure 2(a). The cluster means are parameterized with 5×8 coefficients, and 5 parameters were set to 0 by
subset selection. Mod(2) is the multilevel model with M = 9 clusters and K = 7 first-level clusters. Four
parameters were set to 0 by the subset selection, and 4 parameters constrained by the multilevel structure
of the model (see Table 2). We generate 50 simulated data sets (of the same dimensions as the original
data) each from Mod(1) and Mod(2). We then fit single- and multi-level models and perform cluster
subset model selection. For each simulated data set, we record the selected number of (sub)clusters. We
also compare the selected subset model (for the true number of clusters) to the true model and record the
total number of selection errors (the number of coefficients erroneously set to 0 or nonzero).

In Table 3, we summarize the results (see also Supplementary Figure 3 available at Biostatistics on-
line). Cluster subset selection always produces a better model in terms of the BIC validation index (Sup-
plementary Figure 3(a) available at Biostatistics online). In addition, an MF always reduces the BIC
compared with an SF when a multilevel structure is truly present (Mod(2)) and produces comparable

Table 3. Top panel: the percent of times a number (M, K ) of clusters are selected with the SF and MF for
the Mod(1) data. The correct K = 8. Both fitting strategies perform well, and the MF correctly identifies
an SF (bold face in table) in almost all cases. Lower panel: the percent of times a number (M, K ) of
clusters are selected with the SF and MF for the Mod(2) data. The correct M = 9, with 7 first-level
clusters (K = 7). In almost all cases, the MF correctly identifies a subcluster structure (bold face in

table), rather than single-level model

SF(Mod 1) MF(Mod 1)

K = M K = 7 K = 8 K = 9

M = 8 88 2 86
M = 9 12 0 4 8

SF(Mod 2) MF(Mod 2)

K = M K = 6 K = 7 K = 8 K = 9 K = 10

M = 7 2 2 0
M = 8 14 4 6 2
M = 9 30 0 14 16 4
M = 10 54 0 4 14 22 12
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results with an SF when a single-level structure is true (Mod(1)) (see Supplementary Figure 3(c) and
(d) available at Biostatistics online). The subset selection performance is highly satisfactory (Supplemen-
tary Figure 3(b) available at Biostatistics online), that is, the generative subset model is often correctly
identified. The multilevel approach produces subset selection results closer to the correct subset model,
compared with the single-level approach. This is because selection is undertaken separately for the first-
and second-level clusters (see supplementary materials available at Biostatistics online).

In Table 3, we present the selected number of clusters for the Mod(1) and Mod(2) data sets, using the
SF and MF. In the case of Mod(1) data, the MF in almost all cases identifies the SF as the correct model
structure. In the case of Mod(2) data, the MF in almost all cases identifies an MF (with subclusters) as the
correct model structure. In the case of Mod(2), both fitting strategies have trouble identifying the correct
total number of clusters. The reason for this is that cluster 7 in Mod(2) is sparsely populated. In some
simulations, cluster 7 is split into 2 clusters, producing a total of M = 10 clusters. Sometimes “genes” in
cluster 7 are simply allocated to nearby clusters, producing a total of M = 8 clusters.

In summary, the MF can correctly identify a single-level model as well as a multilevel model. In addi-
tion, the BIC is much reduced if the multilevel structure of the data is accounted for. Subset selection also
reduces the BIC, in both single-level and multilevel models. Our simulations thus illustrate the benefits of
sparse multilevel representations of cluster profiles in model-based clustering.

5. DISCUSSION

We propose a mixture model with multiple levels to more efficiently model multiple-factor experimental
data. In addition, we introduce a subset selection method to generate sparse representations of cluster
profiles, under various parameterizations. We illustrate on real and simulated data that sparse multilevel
mixture models can substantially improve the fit, significantly reducing the BIC, compared with standard
mixture models. We show that our multilevel mixture modeling approach with subset selection can cor-
rectly identify both single-level and multilevel data structures. Furthermore, in our simulation setting, we
show that the subset selection procedure is highly accurate.

Our multilevel approach identifies interesting and biologically relevant groups of genes in the pro-
liferating cell line data. A more thorough study of our findings is now underway in collaboration with
biologists at Rutgers University. We stress that the findings we presented in this paper are preliminary. A
small perturbation study, where we randomly altered 5% of the selected gene list, did provide clustering
results that substantially overlapped with the original outcome (IQR 84–98% concordance). However, as
additional data become available we expect that other cluster structures may be detected.

Efficient cluster model representations (multiple levels and subset selection) will have a larger impact
in high-dimensional settings, for example, time-course data with more time points. It is in these cases that
a multilevel approach with subset selection has the largest potential to substantially reduce the number
of parameters in the model. In addition, while we did not consider efficient representations of the cluster
covariances, this is another area in which modeling efficiency may be explored. Fraley and Raftery (2002)
compared mixture models with parameterized cluster covariances. Incorporating covariance parameteri-
zation and subset selection into our multilevel approach is an interesting future research topic.

While we demonstrated our multilevel approach on a proliferating cell line data, with a 2-level factor
of interest, the method can in theory be extended to more factors and factors with more levels. Let us
consider the case where we have a 3-level factor of interest (e.g. 3 cell lines) and denote the specific
data sets by xg, yg , and vg , respectively. The most simple extension is to use one of the cell lines as
reference, for example, xg . At the second level of the modeling hierarchy, we thus model contrasts with
respect to the reference: yg, vg|xg . This approach is quite reasonable in experiments involving multiple
species or strains, where a “wild-type” or reference strain constitutes a natural basis for comparison. In
other experiments, a modeling hierarchy is induced by ordering the factor levels. Thus, the first modeling
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hierarchy models xg , the second level models yg|xg , and the third level involves vg|xg, yg . The modeling
structure at the third level is of the same mathematical form as the second level, so falls under theMIXL
framework we presented in the paper. The generalization of theMIXL model requires the selection of
the optimal assignment of the factor levels to the levels of the modeling hierarchy. This constitutes an
interesting research problem we plan to explore in the future.

The R implementation of the 2-levelMIXL model is available from the corresponding author upon
request.
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